3,488 research outputs found

    History of early life adversity is associated with increased food addiction and sex-specific alterations in reward network connectivity in obesity.

    Get PDF
    Background:Neuroimaging studies have identified obesity-related differences in the brain's resting state activity. An imbalance between homeostatic and reward aspects of ingestive behaviour may contribute to obesity and food addiction. The interactions between early life adversity (ELA), the reward network and food addiction were investigated to identify obesity and sex-related differences, which may drive obesity and food addiction. Methods:Functional resting state magnetic resonance imaging was acquired in 186 participants (high body mass index [BMI]: ≥25: 53 women and 54 men; normal BMI: 18.50-24.99: 49 women and 30 men). Participants completed questionnaires to assess ELA (Early Traumatic Inventory) and food addiction (Yale Food Addiction Scale). A tripartite network analysis based on graph theory was used to investigate the interaction between ELA, brain connectivity and food addiction. Interactions were determined by computing Spearman rank correlations, thresholded at q < 0.05 corrected for multiple comparisons. Results:Participants with high BMI demonstrate an association between ELA and food addiction, with reward regions playing a role in this interaction. Among women with high BMI, increased ELA was associated with increased centrality of reward and emotion regulation regions. Men with high BMI showed associations between ELA and food addiction with somatosensory regions playing a role in this interaction. Conclusions:The findings suggest that ELA may alter brain networks, leading to increased vulnerability for food addiction and obesity later in life. These alterations are sex specific and involve brain regions influenced by dopaminergic or serotonergic signalling

    Altered functional connectivity within the central reward network in overweight and obese women.

    Get PDF
    Background/objectivesNeuroimaging studies in obese subjects have identified abnormal activation of key regions of central reward circuits, including the nucleus accumbens (NAcc), in response to food-related stimuli. We aimed to examine whether women with elevated body mass index (BMI) show structural and resting state (RS) functional connectivity alterations within regions of the reward network.Subjects/methodsFifty healthy, premenopausal women, 19 overweight and obese (high BMI=26-38 kg m(-2)) and 31 lean (BMI=19-25 kg m(-2)) were selected from the University of California Los Angeles' Oppenheimer Center for Neurobiology of Stress database. Structural and RS functional scans were collected. Group differences in grey matter volume (GMV) of the NAcc, oscillation dynamics of intrinsic brain activity and functional connectivity of the NAcc to regions within the reward network were examined.ResultsGMV of the left NAcc was significantly greater in the high BMI group than in the lean group (P=0.031). Altered frequency distributions were observed in women with high BMI compared with lean group in the left NAcc (P=0.009) in a medium-frequency (MF) band, and in bilateral anterior cingulate cortex (ACC) (P=0.014, <0.001) and ventro-medial prefrontal cortex (vmPFC) (P=0.034, <0.001) in a high-frequency band. Subjects with high BMI had greater connectivity of the left NAcc with bilateral ACC (P=0.024) and right vmPFC (P=0.032) in a MF band and with the left ACC (P=0.03) in a high frequency band.ConclusionsOverweight and obese women in the absence of food-related stimuli show significant structural and functional alterations within regions of reward-related brain networks, which may have a role in altered ingestive behaviors

    Rapid Assessment of Reward-Related Eating: The RED-X5.

    Get PDF
    OBJECTIVE:The prevalence of obesity has created a plethora of questionnaires characterizing psychological aspects of eating behavior, such as reward-related eating (RRE). The Reward-based Eating Drive questionnaires (RED-9, RED-13) broadly and deeply assess the RRE construct. However, large-sample research designs require shorter questionnaires that capture RRE quickly and precisely. This study sought to develop a brief, reliable, and valid version of the RED questionnaire. METHODS:All-subset correlation was used to find a subset that maximally associated with the full RED-13 in two separate samples. Results were validated in a third independent sample. Internal consistency, test-retest reliability, and ability to explain variance in external outcomes were also assessed. RESULTS:A five-item questionnaire (RED-X5) correlated strongly with RED-13 in the independent sample (r = 0.95). RED-X5 demonstrated high internal consistency (omega total ≥ 0.80) and 6-month test-retest reliability (r = 0.72). RED-X5 accurately reproduced known associations between RED-13 and BMI, diabetes status, and craving for sweet and savory foods. As a novel finding, RED questionnaires predicted laboratory intake of chips. CONCLUSIONS:RED-X5 is a short, reliable, and valid measure of the RRE construct and can be readily implemented in large-sample research designs in which questionnaire space is limited

    A core eating network and its modulations underlie diverse eating phenomena

    Get PDF
    We propose that a core eating network and its modulations account for much of what is currently known about the neural activity underlying a wide range of eating phenomena in humans (excluding homeostasis and related phenomena). The core eating network is closely adapted from a network that Kaye, Fudge, and Paulus (2009) proposed to explain the neurocircuitry of eating, including a ventral reward pathway and a dorsal control pathway. In a review across multiple literatures that focuses on experiments using functional Magnetic Resonance Imaging (fMRI), we first show that neural responses to food cues, such as food pictures, utilize the same core eating network as eating. Consistent with the theoretical perspective of grounded cognition, food cues activate eating simulations that produce reward predictions about a perceived food and potentially motivate its consumption. Reviewing additional literatures, we then illustrate how various factors modulate the core eating network, increasing and/or decreasing activity in subsets of its neural areas. These modulating factors include food significance (palatability, hunger), body mass index (BMI, overweight/obesity), eating disorders (anorexia nervosa, bulimia nervosa, binge eating), and various eating goals (losing weight, hedonic pleasure, healthy living). By viewing all these phenomena as modulating a core eating network, it becomes possible to understand how they are related to one another within this common theoretical framework. Finally, we discuss future directions for better establishing the core eating network, its modulations, and their implications for behavior

    Sex Commonalities and Differences in Obesity-Related Alterations in Intrinsic Brain Activity and Connectivity.

    Get PDF
    OBJECTIVE:This study aimed to characterize obesity-related sex differences in the intrinsic activity and connectivity of the brain's reward networks. METHODS:Eighty-six women (n = 43) and men (n = 43) completed a 10-minute resting functional magnetic resonance imaging scan. Sex differences and commonalities in BMI-related frequency power distribution and reward seed-based connectivity were investigated by using partial least squares analysis. RESULTS:For whole-brain activity in both men and women, increased BMI was associated with increased slow-5 activity in the left globus pallidus (GP) and substantia nigra. In women only, increased BMI was associated with increased slow-4 activity in the right GP and bilateral putamen. For seed-based connectivity in women, increased BMI was associated with reduced slow-5 connectivity between the left GP and putamen and the emotion and cortical regulation regions, but in men, increased BMI was associated with increased connectivity with the medial frontal cortex. In both men and women, increased BMI was associated with increased slow-4 connectivity between the right GP and bilateral putamen and the emotion regulation and sensorimotor-related regions. CONCLUSIONS:The stronger relationship between increased BMI and decreased connectivity of core reward network components with cortical and emotion regulation regions in women may be related to the greater prevalence of emotional eating. The present findings suggest the importance of personalized treatments for obesity that consider the sex of the affected individual
    • …
    corecore